

19th ISEC september 22 - 23 2021

22 september

			SESSION		41171100
DAY	HOUR*	TITLE	ORGANIZER	ТОРІС	AUTHOR
22-set	09:10	Open Cerimony			
		Estimation of convective heat losses from conical cavity		THERMAL RECEIVERS,	
		receiver of solar parabolic dish collector under wind		COMBUSTORS AND HEAT	Abhinav Rajan
22-set	09:40	conditions and receiver orientations	D. MAKHAMOV	EXCHANGERS	
		A Comprehensive Perspective of Waste Heat Recovery			Siddharth
22-set	10:00	Potential from Solar Stirling Engines		RENEWABLE APPLICATIONS	Ramachandran
		Performance Improvement and Parametric Analysis of a			Surender
22-set	10:20	Permanent Magnet Linear Alternator			Dhanasekaran
		Stirling powered Solar Dish Collector with Compressed Air		OF STIRLING ENGINES	Giovanni Ricco
22-set	10:40	Energy storage system			Giovanni Nicco
		Analysis of CO2 reduction with micro CHP facility: Renewable			Juan A. Auñon-
22-set	11:00	energies and Stirling engine			Hidalgo
22-set	11:30	Hysteresis Loss inStirling Refrigerators		THERMODYNAMIC MODELLING AND CFD SIMULATION	Danielle Yang
		Energy analysis of a thermochemical exhaust gas	B. BAUWENS		Jian Lan
22-set	11:50	recuperation system of Stirling engines			Jidii Laii
		MSPM: A Tool for Modular Design of Low Temperature Ratio			Steven Middleton
22-set	12:10	Stirling Engines			Steven Middleton
		Numerical Analysis of the Hybrid Parabolic-Solar-			Duc-Thuan Phung
22-set	12:30	Concentrator Combustor Stirling-Engine System			Duc-Thuan Fhung
		Modeling dynamics of the spacecraft power plant consisting			Aigiz Valiullin
22-set	12:50	of Stirling engine and external thermal circuit			Aigiz valialilii
22-set	13:10	Lunch			

22-set	14:00	ISE Council			
		Development of a 100 kWe thermoacoustic-Stirling electrical		NOVEL DESIGN OF DRIVE MECHANISMS AND Th	Jianying Hu
22-set	15:00	generator			Julying Hu
22-set	15:20	STIRLING engines and oil-free compressors			Thierry Raballand
		Generation of compressed air by cascaded			Fabian Fischer
22-set	15:40	thermocompressors – project status	IC. CHING-		Fabian Fischer
22-set	16:00	STIRLING engines and absolute sealing			Thierry Raballand
		Experimental Evaluation of Piston Motion Modification to	INSIANG CHENG	CONFIGURATIONS	
	Im	Improve the Thermodynamic Power Output of a Low			Michael Nicol-Seto
22-set	16:20	Temperature Gamma Stirling Engine			
22-set	16:40	A variant of the Fluidyne: the liquid piston ERICSSON engine			Ryma Chouder
				STIRLING ENGINE PROTOTYPES	
		Development of a 100-Watt-Scale Beta-Type Low	L CLOCCOL ANITI	DEVELOPMENT AND TESTING	Matthias Lottmann
22-set	17:00	Temperature Difference Stirling Engine Prototype	L.CIOCCOLANTI		
		Investigation of Effect of Heat Exchanger Size on Power		HEAT TRANSFER	Linda Hasanovich
22-set	17:20	Output in Low-Temperature Difference Stirling Engines		IIILAI INANSFEN	LIIIUU TUSUIIUVICII

23 september

			SESSION		ALITUOD		
DAY	HOUR*	TITLE	ORGANIZER	TOPIC	AUTHOR		
Session	Session A						
		Demonstration of flywheel-based traveling-wave		STIRLING ENGINE	Takumaru Watanabe		
23-set	09:00	thermoacoustic engine		PROTOTYPES DEVELOPMENT	Tukumuru vvatanabe		
		Design and construction of multi-cylinder type liquid piston			Dractovio Murti		
23-set	09:20	Stirling engine		AND TESTING	Prastowo Murti		
23-set	09:40	Dynamic model for a free-piston Stirling engine	A. SONJA KOLIN		Yi Han Tan		
		Parametric Evaluation of Wobble-Yoke Stirling Engine State			Ermira Abdullah		
23-set	10:00	Space Model		DYNAMICS AND KINEMATICS	ETITIITU ADUUIIAN		

		Performance analysis of free piston Stirling engine based on]		Danaston Chan
23-set	10:20	the phasor notation method			Pengfan Chen
23-set	10:40	Coffee break			
					Michael
		Stirling-Engine in a novel alphagamma configuration — a key			Gschwendtner - Franz
23-set	11:10	for maintance free operation			Diermaier
		Performance Investigation of a kilowatt-class Free-Piston			zilong Jia
23-set	11:30	Stirling Generator			Zilong ha
		Introduction to thermoacoustic Stirling engines - First steps	F.S. MARRA	STIRLING ENGINE PROTOTYPES DEVELOPMENT	Carmen Iniesta
23-set	11:50	and praxis	r.s. IVIAKKA		Curmen miesta
		The Development of a Novel Free-Piston Stirling Engine		AND TESTING	
		Design Algorithm by Applying Variable-step Simplified			Yu-Ting Lin
23-set	12:10	Conjugate Gradient Method			
		Analysis of Thermodynamic Modelling for Gamma Type			Abdul Rab Asary
23-set	12:30	Double Piston Cylinder Engine			Abdul Nub Asuly
23-set	12:50	Lunch			
23-set	13:40	A Study of Mesh Sheets of 3-kW Stirling Engine			Takeshi Enomoto
		Data reduction of friction factor, permeability and inertial		REGENERATOR AND POROUS	
		coefficient for a compressible gas flow through a milli-		MEDIA	Francois Lanzetta
23-set	14:00	regenerator			
		Experimental Testing of β-type Stirling Cryocooler for Low-			Stefan Popesku
23-set	14:20	Temperature Applications	D. BERCHOWITZ		Stejuli Popesku
		An air charged Stirling-cycle refrigerator with novel	STIRLING REFRIGERATORS AND CRYOCOOLERS	STIRLING REFRIGERATORS	Jafar Daoud
23-set	14:40	isothermalisers			
		A novel model and design of a MEMS Stirling cooler for local		Sylvie Begot	
23-set	15:00	refrigeration			Sylvie begot
					Juan A. Auñon-
23-set	15:20	Analysis of the operating parameters in the Stirling cryocooler			Hidalgo
		Low to very high temperature thermal energy recycling – 3			Arne Høeg
23-set	15:40	case studies]	STIRLING HEAT PUMPS	ATTIC TIWEY
		Numerical evaluation of finite length tubes effects in Stirling	J. ARANCETA	HEAT TRANSFER	Francesco Saverio
23-set	16:00	engines heaters	J. ANAINCLIA		Marra

		Appendix gap losses in Stirling engines – review of recent]		Hans Datlay Kuchl		
23-set	16:20	findings			Hans-Detlev Kuehl		
		Round Table:					
23-set	16:40	Introductory speech by J. ARANCETA, C.M. BARTOLINI, A. CORSINI. Coordinator: V. NASO					
Session	Session B						
		Analysis of a Stirling Engine in a Waste Heat Recovery System		WASTE HEAT RECOVERY	Francosco Catanano		
23-set	15:00	with Internal Combustion Engine		SYSTEMS	Francesco Catapano		
23-set	15:20	Resonance stirling engine producing heat and power		COGENERATION SYSTEMS:MICRO CHP	Jean-Pierre Budliger		
		Possibilities of the power optimization in the stirling]		Conia Koččak Kolin		
23-set	15:40	cogeneration fuelled by the natural gas	C.M.BARTOLINI		Sonja Koščak Kolin		
		Lifetime testing of a flexure based natural gas fired 1 kW]		Thomas Steiner		
23-set	16:00	thermoacoustic genset					
23-set	16:20	Stirling Thermodynamics using Phasor Notation		DYNAMICS AND KINEMATICS	Dave Berchowitz		

^{*}GMT +02:00 Italan time